
N94- 35054

C++ Planning and Resource Reasoning (PARR) Shell

James McIntyre, Alan Tuchman, David McLean and Ronald Littlefield
AlliedSignal Technical Services Corporation

Goddard Corporate Park
7515 Mission Drive

Seabrook, MD 20706

ABSTRACT

This paper describes a generic, C++
version of the Planning and Resource
Reasoning (PARR) shell which has been
developed to supersede the C-based versions of

PARR that are currently used to support AI
planning and scheduling applications in flight
operations centers at Goddard Space Flight
Center. This new object-oriented version of
PARR can be more easily customized to build a
variety of planning and scheduling
applications, and C++ PARR applications can
be more easily ported to different
environments. Generic classes of PARR

objects for resources, activities, constraints,
strategies, and paradigms are described along
with two types of PARR interfaces.

Keywords: AI, Planning, Scheduling, Shell

INTRODUCTION

The Artificial Intelligence (AI) software
group at AlliedSignal Technical Services
Corporation has been developing expert system
software for Goddard Space Flight Center
since 1985. These systems use expert system
technology to automatically create conflict-free
schedules. Many expert systems use
commercial programs known as expert system
shells written in either Lisp or Prolog. These
systems often suffer a performance penalty

when the.y are used on personal computers or
engineering workstations. Because we
developed our programs using conventional
programming languages on readily available
computer hardware, they are able to rapidly
schedule hundreds of events.

We have adapted an evolutionary
prototyping approach to software development.
The prototyping aspect of this approach dictates
that we gather initial requirements, create or
evolve a prototype, evaluate the prototype to

update the requirements, and repeat the process
until the prototype satisfies the software users.
The evolutionary aspect dictates that our
prototypes are not developed to be thrown
away, but instead are based on generic,
reusable software tools. The prototypes are
updated, not rebuilt, with each prototyping
cycle. As we build a system, we develop new
software tools. When the tools appear to be
useful outside the project where they were first
implemented, we add them to our tool library.
In many cases, we are able to base a new

system entirely on tools that exist in our
library.

BACKGROUND

We delivered the Earth Radiation Budget
Satellite (ERBS)-Tracking and Data Relay
Satellite System (TDRSS) contact planning
system to the ERBS flight operations team in
1987. It was the first AI expert system
application at Goddard that supported flight
operations. It is used to build schedules of
requests to TDRSS for communications
contacts to send commands to ERBS and to
download data.

The ERBS-TDRSS system created its
schedules using the first version of the

Planning And Resource Reasoning (PARR)
tool (McLean et aI., [1]). PARR is an expert
system shell designed expressly for scheduling
applications. Its knowledge base is organized
into activity classes. Each activity class
represents something that can be scheduled; in
the ERBS-TDRSS system, the activity classes
represent the scheduling of communication
contacts between ERBS and a Tracking and
Data Relay Satellite (TDRS) via a specific
antenna. Each activity class contains both
strategies which suggest ways that the activity
can be scheduled and constraints which specify
limitations on when the activity can be
scheduled.

PIV_IfO_G PAGE BL./II,NK NOT FILMED
135

PARR works as an intelligent tactical

planning tool to put specific activities on a
timeline by following the strategies and
checking the constraints found in its knowledge
base. Unlike traditional scheduling systems

that try to anticipate all possible scheduling
conflicts before scheduling an activity, PARR
uses conflict resolution strategies to reschedule
activities that do not meet their constraints

(McLean, et. al., [2]). PARR's knowledge
base forms a strategic plan, a list of broad

strategies used to schedule activities. PARR
uses this strategic plan to create a tactical plan,
a list of specific activities with specific times
and durations.

PARR is unusual in its use of a
combination of conflict avoidance and conflict

resolution. While many scheduling systems
backtrack and change their partial schedules
extensively, PARR mimics the way people
create schedules. We have found that people

obtain insight into a scheduling problem and

quickly develop rules like "that requires most
of the resources, so schedule it first" or "if we

have trouble fitting this into the schedule, we
can reduce its duration by a few minutes and
make it fit." PARR captures this kind of

strategy in its knowledge base along with the
more traditional conflict avoidance rules like

"this "can only be scheduled when that resource
is available." By dynamically applying both

types of rules, PARR limits the amount of
search that is required to build a timeline and is

able to produce a conflict-free schedule much
faster than other systems.

After developing the ERBS-TDRSS

system, we realized we had the appropriate
tools in our library to quickly build more

complex scheduling systems (McLean, et. al.,
[3]). In 1991, we delivered the Explorer
Platform Planning System (EPPS) to the flight

operations team for the Extreme Ultraviolet
Explorer (EUVE) spacecraft (McLean, et. aL,
[4]). EPPS shares much of its implementation
with the ERBS-TDRSS system, including a
revised version of PARR. Like the ERBS

system, EPPS generates schedules of TDRSS
requests. In the development of EPPS, we
found that our simple way of expressing
constraints was insufficient. The ERBS

system simply checked whether a conflicting
resource or activity was scheduled during the

period under consideration. EPPS needed to
schedule activities that affected power and tape

consumption, and the system needed
constraints that could track these resources.

We realized that new scheduling problems
would need new resource models to support
new kinds of constraints. Rather than creating

new code to support each new type of
resource, we created more general resource
models that could be used to model many
different kinds of resources. EPPS was the

first system to use resource models

The next significant PARR development
occurred as we developed the Hubble Space
Telescope (HST) Servicing Mission Planning
and Replanning Tool (SM/PART) which we
delivered in 1992 to help the HST flight

operations personnel build integrated timelines
and command plans to control the activities of
the HST, the space shuttle and the space shuttle
crew for the HST servicing mission in
December 1993 (Bogovich, et. al., [5]).
SM/PART uses PARR in a slightly different
way. In our previous systems, each activity
class in the knowledge base is scheduled
repeatedly over time. In SM/PART, each
activity class is scheduled only once during the
schedule, but the activity class definitions and
resource availability may change, causing the

need for replanning. This changed our
t;nderstanding of the relationship between
tactical and strategic planning. Users may not

always be able to completely define all of their
activities before scheduling and may need to
tweak the knowledge base during the tactical

planning process.

In addition to these three systems, we also
developed several prototype scheduling
systems that gave us insight into other useful
capabilities. We prototyped systems that

merged schedules that were created by.other
scheduling systems and built a new version of
PARR that takes multiple schedules as inputs
and merges them into a single conflict-free
schedule. Another prototype scheduled
observations of stars and represented each

potential target star as a different activity class.
To create an efficient schedule, we created a

system that found the shortest path between the
targets stars using a Hopfield net (Yen, et. al.,
[6]). These prototype systems pointed up the
need for a more general system to select the

136

activity classes to be scheduled, the order in

which they are considered for scheduling, and
which of their strategies are used.

A NEW PARR

After using PARR to develop three major
systems and several prototypes, we began to
find limitations with our implementation of

PARR. Each new project required new
strategies, new constraints, and new resource
models to support the new constraints. It was

more and more difficult to make changes
needed to add the new strategies, constraints,
and resource models without affecting other
parts of the program. PARR also needed ways
to add broader kinds of strategies to encompass
more than one activity class.

We also gained insight into PARR's
interfaces. PARR has two primary interfaces:
an interactive interface and an interface using
files. Each new system or prototype required a
different interactive interface. Some of the

differences were dictated by the fact we
implemented each system on different hardware
platforms and operating systems; others were
driven by the user's needs. We saw we would
continue to need to adapt the interactive
interface to meet the users' needs. The file-

based interface also continued to change. New
strategies, resource models, and constraints
required changes in the formats of the

knowledge base files. The prototypes that
explored the relationships between the activity
classes also needed changes in the file formats.
We saw that if the file structures were
extensible, old versions of the files would still
be usable after new features were added.

We decided that the best approach to these
problems was to reimplement PARR in C++.
C++ is an object-oriented language based on C,
the language used to implement all previous
versions of PARR. The objects defined in
C++ contain both data and methods, or

functions that operate on the data. Each object
has a well-defined interface, so interactions

between objects are easy to understand and an
object can be changed with little impact on
other objects. Objects can inherit data,
methods, and interfaces from other objects, so
new objects can reuse existing objects. Objects
also have the ability to provide their own

implementations of methods they inherit,
giving them the ability to use the same interface
to accomplish different tasks.

We found the functionality provided by
C++ to be a good match for our needs.

Strategies can be represented by an abstract
class that describes a set of general methods
that are appropriate for any strategy. Each of

the specific strategies can be represented by a
class derived from the abstract strategy class.
Each derived class can implement the general
methods in a way that is appropriate for that
specific strategy. New strategies can be added
by deriving additional classes without
modifying the abstract strategy class. These
new derived classes can be integrated into the
system without modifying the rest of the
program. Constraints and resource models can

be represented the same way. The more
general strategies that handle interactions
between activity classes can also benefit from

the same representation. C++ and object-
oriented techniques also offer solutions to our
interface concerns. Different interactive
interfaces for different users can share much of

their implementation code by using a class
library made up of classes which implement the
scheduling algorithms.

IMPLEMENTING PARR IN C++

The Solar and Heliospheric Observatory
(SOHO) Experimenters' Operations Facility
(EOF) Core System (ECS) requires a
scheduling system to find and resolve conflicts
between the schedules for each of the satellite's

eleven instruments. The scheduling system in
the EOF needed the type of schedule merging
capability provided by one of the prototype
systems. This presented the opportunity to
redesign and reimplement PARR using object-
oriented methods.

When designing or implementing a

program usin.g .object-oriented methods, the
primary orgamzmg construct is the class. Each

class describes a type of object. By definition,
an object is anything that can be thought about,
a concept. In most object-oriented systems, the
classes are abstractions of concrete, real-life

objects, like spacecraft, stars, or people.
Because PARR is a generic scheduling system
that can schedule many kinds of things,

137

PARR's classes represent abstractions of
schedulingobjects,suchasactivities,strategies
andconstraints.

Resource Classes

PARR refers to any data it does not directly
schedule as a resource. Resources include both

data that PARR cannot change and data that

changes as a result of the schedule PARR is
creating. In the satellite scheduling domain,
spacecraft daylight is an example of a resource
PARR cannot change, and available power is
an example of data that is changed by the
activities PARR schedules.

PARR has different resource models it uses

to track different types of resources. Each
resource model is represented by a different
resource class. PARR implements an abstract
class, ResourceClass, from which each of the

classes representing a type of resource is
derived. ResourceClass has an interface that is

appropriate for any type of resource model. Its
interface has a method that accesses the

resource's value at any given time. It also has
a method that confirms that a constraint can be

satisfied and one that updates the data to reflect

the application of the constraint.

Subscribable is the resource class used to

represent data that PARR cannot change. A
class called SubscribableResourceClass is

derived from ResourceClass to represent these

resources. It implements the access method so
that it returns the number "one" when the
resource is available and the number "zero"
when it is not. The method that confirms a
constraint checks the value against the

constraint. The update method simply modifies
bookkeeping data because the data itself cannot

be changed.

Limited capacity is one of the resource
classes that can be used to model data that is
modified as PARR creates a schedule. It is
used to model resources that have a maximum
amount that can be used at one time, like water

supplied through a pipe from a public utility. It
is implemented with a class called
LimitedCapacityResourceClass. Each instance
of this class contains data stating its maximum

level of consumption. It updates the access
method from its parent class, ResourceClass,

to provide the amount of capacity that remains
at any specific time. The constraint checking
method verifies the constraint against this value
and the update method modifies it to reflect the

application of the constraint.

Consumable is the third resource class that

PARR provides. It is used to model resources
that can be consumed and replenished. The
gasoline in a car is a good example of a
consumable resource. The class that is derived

from ResourceClass to implement this model is
called ConsumableResourceClass. Instances

of this class contain both a maximum capacity
for the resource and a base level that is used
when no other data is available to initialize the

resource availability. The class implements the
access method that gives the amount of
resource available at any time. The constraints
that are used with this resource class are

different in that they can also specify the

replenishment of the resource. The constraint
validation method checks that the constraints

that specify consumption do not consume more
of the resource than is available. The update
method modifies the data to reflect the amount

of consumption or replenishment the constraint
indicates.

Activity Class

PARR also needs to represent the types of
activities that it is to schedule. They are

defined in activity classes. Each activity class
represents one type of activity that can be
scheduled. Activity classes are represented by
a class called ActivityClass. ActivityClass acts
primarily as a container for data describing its
class and for keeping track of when activities of
its class have been scheduled. It has methods

for input and output, methods that can tell
when activities of its class have been

scheduled, and methods to update this
information when PARR adds or removes

specific activities from the schedule. Instances
of ActivityClass contain some simple data
including the activity class name, priority, and
how activities of this class can be shifted. An

activity class can be derived from another
activity class in the same way a C++ class can
be derived from another C++ class.

ActivityClass has a reference to the activity
class it is derived from, if any, and it has data
access methods that automatically obtain any

138

data that the ActivityClass inherits from its
parent. Most importantly, ActivityClass
contains a list of constraints and a set of
strategies.

Constraints

Constraints represent PARR's conflict
avoidance rules. A constraint can state how an

activity must be scheduled in relationship to
other activities or resources. For instance, a

constraint might say that an activity can only be
scheduled during spacecraft daylight, or only
when no other activity is scheduled. If the
resource represents data that the schedule
indirectly modifies, the constraint will say how
that data is modified. For example, if the
resource is water from a pipe, the constraint
will state how much water the activity
consumes. PARR implements an abstract
class, Constraint, to establish an interface for
all of its constraints. Constraint establishes

methods to validate the constraint for a given
activity, and to update the resource data for an
activity when the activity is actually scheduled.
There is a different subclass of constraint for

each resource class, and one that represents the
constraints between different activity classes.

SubscribableConstraint is the class that

represents constraints between activity classes
and resources represented by a subscribable
resource class. Each instance of
SubscribableConstraint contains a reference to

the SubscribableResourceClass the activity is
constrained by and the desired state of the
constraint. For example, if the constraint stated
that an activity could only be scheduled during
spacecraft daylight, the SubscribableConstraint
would contain a reference to the

SubscribableResourceClass representing
spacecraft daylight and the value "one",
indicating that the resource should be present.
Its methods simply call the corresponding
methods in the resource class to which it refers.

LimitedCapacityConstraint is the class that
represents constraints between activity classes
and resources represented by a limited capacity
resource class. The instances of

LimitedCapacityConstraint each contain a
reference to the specific instance of
LimitedCapacityResourceClass that represents
the desired resource and the amount of the

resource that the activity consumes. For
example, if the constraint says that an activity
consumes 25 gallons of water, the resource
class reference would be set to the instance of

LimitedCapacityResourceClass that represents
water and the amount would be set to 25. As

with the SubscribableConstraint,

LimitedCapacityConstraint implements its
methods by calling the methods in the resource
class to which it refers.

Constraints between activity classes and

resources represented by a consumable
resource class are handled by the class
ConsumableConstraint. Its instances contain a
reference to the instance of
ConsumableResourceClass that models the
resource under consideration and the amount of
the resource under consideration. Because

activities can either supply or consume
resources of this class, the instances also

contain an indicator telling whether this is a
constraint where the resource is being
consumed, or whether the constraint is

indicating that the activity supplies more of the
resource being modeled. For example, if the
constraint was being used for an activity that
records data to the data tape recorder on a

satellite and it requires 25 feet of tape, the
resource class reference would be set to the

instance representing tape, the amount would
be set to 25, and the indicator would be set to

"consume." If the constraint was being used
for an activity that downlinks data from that
same tape recorder and the activity reads back
200 feet of tape, the resource class reference
would remain the same, the amount would be
set to 200, and the indicator would be set to

"supply." As in the other constraints, the
methods in ConsumableConstraint are

implemented by calling corresponding methods
in the ConsumableResourceClass to which it
refers.

All of the constraints which represent
relationships between resources and activity
classes follow a similar pattern. Because the
class ActivityClass keeps track of information
on when an activity has been scheduled in a
way that parallels the way resource classes

keep track of resource consumption,
ActivityClassConstraint can be implemented the
same way that the other classes derived from
Constraint are implemented.

139

ActivityClass constraints represent
constraints between two different activity
classes.Thefirst of the two activity classesis
implied by thelocationof theconstraintwithin
an activity class. Each instance of
ActivityClassConstraintcontainsareferenceto
the secondActivityClass andan indicator that
representswhether the constraining activity
class must be present or absent. In other
words, if theconstraintstatedthat an activity
could only be scheduledwhen a certainother
activity was not scheduled, the constraint
would containa referenceto theActivityClass
representingthe constrainingactivity and its
indicator would be set to "avoid," indicating
thattheconstrainingactivitymustnotbeon the
_cheduleduring the sameperiod. Its methods
call the methods provided by ActivityClass
indicatingwhenanactivityhasbeenscheduled.

Strategies

Strategies represent PARR's conflict
resolution rules. Strategiesareusedto place
activities on the schedule, and to move
activitieswhentheconstraintcheckingprocess
discoversconflicts. For instance,a strategy
might suggestschedulingan activity when a
certain resourcebecomesavailable,or putting
an activity after an activity it conflicts with.
Althbugh manystrategiesmaybe appropriate
for rescheduling,only certainstrategiesmake
sensewhen initially adding an activity to a
schedule.PARR implementsanabstractclass,
Strategy,to providean interfacefor classesthat
implementstrategies.Strategydefinesmethods
that takeanactivity anda list of conflicts and
trys to reschedulethe activity to avoid the
conflicts.

Becauseonly a limitednumberof strategies
canbeusedto scheduleanactivity initially, and
they requireadifferent interfacewhenusedin
this way, PARR provides a secondabstract
class, InitialStrategy, that is derived from
Strategy. InitialStrategyprovidesmethodsin
addition to thosedefinedby Strategythat can
beusedwheninitially schedulinganactivity. It
defines a method that schedulesan activity
givennootherinput thanthecurrentschedule.
This methodreturnsa list of conflicts if the
activity cannotbescheduled,andan indicator
that tells if the activity shouldbe scheduled
again. Initia-IStrategyalso implements the

reschedulingmethod. It reschedulesby calling
the schedulingmethod, ignoring the list of
conflicts passedinto the method. The three
differentinitial strategiesthatareprovidedare
thestart strategy,the stopstrategyand the at
strategy.

The start strategy tries to schedule an
activity when a resourcebecomesavailable.
For instance, if having a star in view of a
satellite is a resource, a start strategy may
indicatethatanactivity is to bescheduledwhen
theresourcebecomesavailable,indicatingthe
activityshouldbescheduledwhenthestaris in
view of the satellite. PARR implements a
class,StartStrategy,that is usedto representa
startstrategyin anactivityclass.Eachinstance
of StartStrategycontains a referenceto the
ResourceClass that corresponds to the
appropriateclass. It alsohasanoffsetduration
that can be set to indicate that the activity
shouldbe scheduledthe specifiedamountof
time before or after the start of resource
availability.

Thestartstrategyis consideredarepeatable
strategy;the activity will be scheduledevery
time the resource becomesavailable. The
instancescontainadataitemthatgivestheuser
the ability to indicate a count that makesthe
strategyskipanumberof instancesof resource
availability before scheduling again. For
(

instance, if the count was set to 3 in the

previous example, the system would try to
schedule the activity every third time the star
came into view. StartStrategy implements the
method for scheduling by searching the current
schedule for activities of this type. When it
finds the last activity of this type, it searches
for when the key resource becomes available.
If the count is set, it skips the appropriate
number of times the resource becomes

available. It then attempts to schedule the

activity and checks its constraints. If there are
conflicts, it returns a list of them. It also
returns an indicator that the strategy should be
retried so that the scheduling of this resource
continues.

The end strategy is quite similar to the start

strategy, except that is attempts to schedule at
the end of a resource's availability. It is

implemented via the class StopStrategy.
StopStrategy's implementation parallels

140

StartStrategy's.Eachinstance of StopStrategy
contains a reference to the ResourceClass

corresponding to the key resource, an offset,
and a skip count. Its implementation of the
schedule strategy is the same as in
StartStrategy, except that it looks for the end of
a resource's availability.

The at strategy is the simplest of the initial
scheduling strategies. It simply schedules an
activity at a given time. The class AtStrategy is
used to represent this strategy in an activity
class. The instances of AtStrategy store the
start time that the user specifies. It implements
the scheduling method to put the activity at the
given time and check for conflicts. The method
returns a list of any conflicts it finds and an
indicator that the strategy is not to be applied
again.

The initial strategies can also be used as
alternative strategies to reschedule activities that
could not be initially added to the schedule
because of conflicts. In addition, PARR also

provides several strategies that can only be
used as alternative strategies. These alternative
strategies include: the before strategy, the after
strategy, the next strategy, the prior strategy,
the duration strategy, the bump strategy, the
activity strategy, the delete strategy and the
shift strategy.

The before and after strategies try to resolve
a conflict by scheduling an activity either before
or after the conflicts. The before strategy is
represented by the class BeforeStrategy and the
after strategy by the class AfterStrategy.
BeforeStrategy implements the rescheduling
method to search through the constraints to find
the time before all of the conflicts and attempts
to schedule the activity at that time.
AfterStrategy implements the method using a
similar algorithm to find a time after all the
conflicts.

The next and prior strategies look for the
next or previous time that a given resource
becomes available and tries to reschedule the

activity at that time. The next strategy is
represented by the class NextStrategy and the
prior strategy is represented by the class
PriorStrategy. Instances of each of these
classes contain a reference to the

ResourceClass representing the key resource.

NextStrategy implements the rescheduling
method to start at the time the activity was to be
scheduled, search for the next time the key
resource becomes available, and attempt to
schedule the activity at that time. PriorStrategy
implements the method using the same
algorithm but searching for the last time the key
resource was available.

The duration strategy tries to make an

activity fit into the schedule by reducing its
duration. The duration strategy is represented
by the class DurationStrategy. Each instance of
DurationStrategy contains a duration by which
the activity can be reduced. It implements the
reschedule method by reducing the duration of
the activity and adding the activity to the
schedule.

The bump strategy is closely related to the
duration strategy. Rather than reducing the
duration of the activity, it moves its starting
time. The bump strategy is implemented by the
class BumpStrategy. The instances of
BumpStrategy each contain an amount of time
by which the start time of the activity can be
moved. It implements the reschedule method
by changing the start time of the activity by
adding the offset and putting the activity into
the schedule.

The activity strategy resolves a conflict by
scheduling an activity of a different class. The
activity strategy is represented by the class
ActivityStrategy. Each instance of
ActivityClass contains a reference to the
ActivityClass that represents the alternative type
of activity that should be scheduled.
ActivityStrategy implements the reschedule
method by calling the schedule method in the
InitialStrategy in the alternative ActivityClass.
If it encounters conflicts, it calls the reschedule

method of each of the alternative strategies in
turn until the conflict is resolved.

The delete strategy deletes the activities that
are causing the conflict. Before deleting an
activity, PARR checks that the activity causing
the conflict is of a lower priority than the
activity containing the delete strategy. The
delete strategy is represented by the class
DeleteStrategy. It implements the reschedule
method by finding the activities that cause all of
the conflicts. After checking that all of them

141

are of a lower priority than the activity being
scheduled, it deletes them. Then it tries again

to add the original activity to the schedule.

The shift strategy moves the activities that
are causing the conflict. Before moving an
activity, PARR checks that the activity causing
the conflict is a shiftable activity and is of a

lower priority than the activity containing the
shift strategy. The shift strategy is represented

by the class ShiftStrategy. It implements the
reschedule method using an algorithm similar

to the one used by DeleteStrategy. It starts by
finding the activities that cause all of the
conflicts. After checking that all of them are
shiftable and of a lower priority than the

activity being scheduled, it moves them either
before or after where the original activity was
to be scheduled. Then it tries again to add the

original activity to the schedule.

Paradigms

The strategies described above each
describe ways to schedule individual classes of
activities. Although the strategies can delete or
move activities that cause conflicts with an

activity being scheduled or schedule an activity
of another class if the desired activity creates

conflicts, they cannot indicate which activity
classes are to be scheduled or in what order the

activity classes are to be scheduled. They also
cannot get activities from alternative sources,
such as schedules created outside of PARR.

PARR handles these types of problems by

using paradigms. Paradigms work at a higher
level than regular strategies. PARR provides
an abstract class called Paradigm that provides

an interface for paradigms. The interface is
similar to the Strategy interface; it defines a
method that takes the action that the paradigm
describes. It calls this method "schedule".

Paradigms are a recent addition to PARR,
so only a few of them have been implemented.
PARR currently provides the activity paradigm,

the merge paradigm, and the delete paradigm.

The activity paradigm is used to select an

activity class to be added to the schedule. In
pervious versions of PARR, this was the only
type of paradigm. This paradigm has been
extended to accommodate the kind of tactical

planning used in SM/PART. The activity

paradigm lets the user override any of the data
in the activity class, including the initial

strategy, and add new constraints and
alternative strategies to the activity class. This

gives the user the ability to create slight
variations on an activity without creating an

entirely new class that may only be used once.

The activity paradigm is represented by the
class ActivityParadigm. Instances of this class
contain a reference to an instance of

ActivityClass that represents the type of activity
to be scheduled. The instance also contains
most of the data contained in an instance of

ActivityClass: the priority, the information on
how the activity can be shifted, the constraints,
and the strategies. This data is used only if it
has been provided. It implements the schedule
method by calling the schedule method in the
InitialStrategy provided either locally or in the
ActivityClass. If it encounters conflicts, it calls
the reschedule method of each of the alternative

strategies from the ActivityClass in turn until
the conflict is resolved. If none of them
resolve the conflict, it calls the reschedule
method of each of the alternative strategies

provided locally in turn until one of them
resolves the conflict.

The merge paradigm is used to merge
schedules created outside of PARR into a

single conflict-free schedule. It expects that
this externally created schedule is in a file in a

simple, pre-defined format. The merge
paradigm is represented by the class
MergeParadigm. Each instance of this class
stores the name of the file that contains the

schedule to be merged. It implements the
schedule strategy by first reading an activity
from the schedule file. It then finds the

ActivityClass that represents the activity and
uses the start time and duration from the
external schedule file to add the activity to the
schedule. It uses the constraints from the

ActivityClass to validate that the activity causes
no conflicts. If it does cause conflicts, it calls
the reschedule method of each of the alternative

strategies from the ActivityClass in turn until
the conflicts are resolved. It then repeats the

process for each activity in the external
schedule file.

The delete paradigm is used when the
schedule is modified interactively. When the

142

userdirectsPARRto deletea specificactivity
from the schedule,an instanceof the delete
paradigmis usedto representthis action. It
may seemthat the paradigmthat wasusedto
schedulethe activity could be removed,but
mostof theparadigmscanaddmanyactivities
to the schedule. The delete paradigm is
represented in the system by the class
DeleteParadigm. Each instanceof this class
containsa referenceto the ActivityClass that
correspondsto theactivity to bedeletedandthe
start time and duration of the activity. This
information is enoughto uniquely identify a
specificactivity. DeleteParadigmimplements
the schedule method (although the name
scheduleis somewhatof a misnomerin this
case) by checking that the removal of the
activity will not causeanyconflicts, andthen
deletingit from theschedule.

Files

The set of classes used to implement PARR
is completed with classes used to organize the
other classes into logical sets that can be saved
to or read from files. These classes are derived

from an abstract class called File. Having a
single abstract class representing the main files
simplifies writing the part of the user interface

that handles saving and loading information
from disk. The File class provides an interface
defining methods to transfer the information its

derived classes contain between memory and
disk. The three classes derived from File are

ResourceBase, KnowledgeBase and Plan.

A resource base serves as a repository for
resource classes. PARR represents this
concept with the class ResourceBase. Each
instance or ResourceBase holds a list of
instances of the class ResourceClass. It

provides methods for retrieving the resource
classes by name, adding new resource classes,
and deleting existing ones.

A knowledge base is a set of information

that can be used to reason about a given topic.
In PARR, the knowledge bases are used to
store the activity classes. PARR provides a
class, KnowledgeBase, that contains instances
of ActivityClass to represent the knowledge
needed to schedule each type of activity.
Instances of KnowledgeBase also contain
references to one or more instances of

ResourceBase. These resource bases provide
the resource classes to which the constraints

refer. KnowledgeBase implements methods
for retrieving the activity classes by name,
adding new activity classes and deleting
existing ones. It also provides methods to add
or remove resource bases and to access the
resource classes contained in its resource
bases.

The class that is used to combine all of the
information in PARR in order to create the final

schedule is called Plan. Plan represents a
planning problem in its entirety. Each instance
of plan contains the starting date and time for
the schedule and its duration. It has references

to one or more instances of KnowledgeBase
that it uses to provide the knowledge needed to

schedule activities. Most importantly, it has
references to instances of the class Paradigm.
These instances represent the tactical plan and
the information needed to select the proper
activity classes in the correct ways to create the
schedule. It has methods to access and update
the data it contains, including methods to
access the resource classes and activity classes
it can access indirectly. Most importantly, it
has a schedule method that calls the schedule

method of each of its paradigms in turn to
create the final schedule.

PARR'S INTERFACES

As stated earlier, PARR has two primary
types of interfaces: a file-based interface and an
interactive interface. The current version of

PARR uses different approaches to make each
of these interfaces easier to modify.

The format for PARR's input files has been
changed in the current version. The files that

represent resource bases, knowledge bases,
and plans now allow the free use of spaces,
line breaks and comments between any words
in the file. The file formats use keywords to
help clarify the meaning of each data item.
This helps both the user, who is given more
information on what the data in the files

represents, and the program, which can
determine if any pieces of data are missing.
Any new types of data that are added to the file
formats will be optional, so older files will not
need to be changed to accommodate the new
format.

143

PlmLuinf and Sckeduli_ S_baysten
I"IF

m 1M

00_0_0 04.-,n900 m:O0:O0 t2:l]O:lflO IEdE]O_OO 20_0900

-.t--I

Sp_..AUm
i_i..__'n.s

[nundu_b.a_p,

o__r_.i.._1

_In_Sxplm._

llm=_qsd

Nm'J[Sl;lON i._O

INS'r_RI_ERVED_LASCO

NAT SESSION_Eft

m'$EsstoN_uvcs

I

.j-

j ' I

I1_:0:P NAT_SESSION WCS

L1 Ij

Figure 1. Motif-Style User Interface Display for the PARR Timeline Editor

Each class defined in PARR is responsible

for handling its own file data. Every class has
methods that can retrieve data from a file, create
an instance based on that data, and store an
instance to a file. The abstract classes are

designed to retrieve data for any class that is
derived from them. When derived classes are

written, the abstract classes can handle the new

data that may appear in a file without modifying
their methods.

represents the schedule and interactively change
it by adding or deleting activities. It also
provides a window for editing the activity
classes that make up the knowledge base. This
window is shown in Figure 2. It displays an

activity class textually, but lets the user modify
it using the mouse for most of the necessary
ifiput.

CONCLUSIONS

Because different scheduling systems

require different types of interactive interfaces,
the classes that implement PARR's scheduling

algorithms do not have any interactive interface
built into them. They can call outside functions
when instances are created, modified or

destroyed. They use a mechanism similar to
the one used in the X Windows toolkit for

accepting functions that are Called when their
instances change state.

We have developed an interactive user
interface to C++ PARR for the SOHO EOF

project. It uses the OSF/Motif libraries and a
set of X Windows toolkit widgets _tlaaf_we

developed in-house. Its primary window is the
timeline editor shown in Figure 1. This display
lets the user view a graphical timeline that

The object oriented nature of the new C++
version of PARR allows it to be relatively

easily customized to build new planning and
scheduling applications. For each new PARR
application, the classes of generic objects for
resource classes, constraints, and strategies can

be supplemented with application-specific

types.

In addition, C++ PARR applications can be

more easily ported to different environments
because the object oriented user interface code
has been more completely separated from the

algorithmic code.

Finally, the new C++ version of PARR

provides paradigm constructs. One of the
current paradigms PARR provides lets the user

144

Fib ELH
F_p

NRT_SEImlON

NRT 8ES;;ION_LASCO

NFrT_SEliSiON_EIT

NRT_SESSION_I.NC8

INS'I'_FI ESERVED

INST_RESERVED_LASCO

INS'I'.RIESERV ED.EIT

INST_RESERVED_UVCS

Sekdon

I IN_I'_RESERVED_UYCS

aoiitltl, ai-,-, INS'r_RESERVED_UVC8

bared on II_'T_RESEIWED
(:xm_ralntb

= =::::: _ [.;I _ I: ll_'_ ::_ [@hi IltvLs_

end

C_x,mb_nt TYPe During _ J value NR'I" SESSION UVCS _ i .-I Any A_'tty ..J No A_ivHy

Add Bmm:l On J

Add Shit_b_ J

Acid Pd o,'i_ I

Add OmmlbalM I

Add 8¢d_ullng i

Addm._.ll,,: I

Figure 2. Motif-Style User Interface Display for the PARR Knowledge Base Editor

create variations on the activity classes when
creating a tactical plan. Another paradigm
provides for the input of schedules created by
other systems. The paradigm constructs
provide capabilities for extending PARR to
handle additional kinds of scheduling problems
more easily.

ACKNOWLEDGMENTS

The authors would like to thank Goddard

Space Flight Center Code 514, AlliedSignal
Technical Services Corporation, and the SOHO
Project for their support of this task. This
work was supported by NASA Contract
NAS5-27772.

REFERENCES

1. McLean, D., Littlefield, R., and Beyer, D.,
"An Expert System for Scheduling
Requests for Communications Links
between TDRSS and ERBS," Proceeding
of the 1987 Goddard Conference on Space
Applications of Artificial Intelligence (AI)
and Robotics, Goddard Space Flight
Center, Greenbelt, MD, May 13-14, 1987.

. McLean, D., Page, B., Tuchman, A.,
Kispert, A., Yen, W., and Potter, W.,
"Emphasizing Conflict Resolution versus

Conflict Avoidance during Schedule
Generation," Expert System With
Applications , Vol. 5, Pergamon Press,
1992.

3. McLean, D. and Yen, W., "PST & PARR:

Plan Specification Tools and a Planning
and Resource Reasoning Shell for use in
Satellite Mission Planning," Proceedings of
the 1989 Goddard Conference on Space
Applications of Artificial Intelligence,
Greenbelt, MD, 1989.

. McLean, D., Page, B., and Potter, W.,
"The Explorer Platform Planning System:
An Application of a Resource Reasoning
Planning Shell," Proceedings of the First
International Symposium on Ground Data
Systems for Spacecraft Control, Darmstadt,
Germany, 1990.

5. Bogovich, L., Johnson, J., Tuchman, A.,
McLean, D., Page, B., Kispert, A.,
Burkhardt, C., and Littlefield, R., "Using
AUExpert System Technology to Automate
Planning and Replanning for the HST
Servicing Missions," Proceedings of the
1993 Goddard Conference on Space
Applications of Artificial Intelligence, pp.
3-10, Goddard Space Flight Center,
Greenbelt, MD, May 10-13, 1993.

145

6. Yen, W., and McLean, D. "Combining
Heuristics for Optimizing a Neural Net
Solution to the Traveling Salesman
Problem," Proceedings of the First
International Joint Conference on Neural
Networks, San Diego, CA, June, 1990.

146

